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Abstract 

Bauxite residue (BR) is the main waste of the alumina sector. It is produced at rates of 170 million 

tons per year, out of which only 4 million tonnes are used in other industrial processes. Currently, 

less than 3 % is used as a raw material in Portland cement production, mostly due to limitations 

imposed by the clinker chemistry itself. Hence, research is being carried out to develop Fe-rich 

cements, and by doing so, incorporate higher levels of BR. In the work herein, a low-CO2 ferrite-

belite cement clinker was developed by incorporating more than 35 wt% BR as a raw material. 

Two sets of clinker mixtures were designed using thermodynamic modelling, and limestone, 

kaolin, and BR as raw materials. A low-BR clinker (38 wt% BR) and a high-BR clinker (50 wt% 

BR) were synthesized at 1250-1260°C, followed by rapid cooling. The results obtained from 

quantitative X-ray diffraction and electron probe microanalysis indicated that the low-BR content 

clinker had more Ca2(AlxFe1-x)2O5 and C2S (reactive phases) with some minor gehlenite, whereas 

a higher BR content increased the content of gehlenite and perovskite. Apart from the particular 

phase assemblage and the amount of each phase formed, the amount of BR in the clinker’s raw 

meal also affects the particular solid solutions formed. This is due to the variability in the Al/Fe 

ratio in the Ca2(AlxFe1-x)2O5 phase influencing the reactivity, but also due to the presence of Na+, 

transition metals such as Fe3+ and Ti2+ in the Ca2(AlxFe1-x)2O5 as well as C2S reactive phases , 

being able to stabilize the reactive polymorphic phases. In addition, an interstitial face such as 

reactive mayenite is formed at lower temperatures due to rapid cooling. Moreover, it is also 

expected that the solidification path will play a role, and that higher cooling rates will most likely 

lead to enhanced overall hydraulic activity. 
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1. Introduction

The utilization of BR is roughly about 10 % in China and 2-3% globally [1]. The use of bauxite 

residue in the manufacturing of construction materials is a path of considerable interest for the 

alumina producer since it may absorb vast amounts of waste and provide a new revenue stream. 

Few alumina refineries in the world such as Hindalco in India, Mykolaiv in Ukraine and 

Mytilineos in Greece are supplying unmodified-BR as a raw material to the cement plant for 

Portland cement production (OPC). Hindalco achieved an 100% utilization of bauxite residue 

from three of its refineries by sending it to more than 40 cement plants in India, achieving a sale 

of 2 million tonnes of its BR production [2]. It is estimated that a total of 3 million tonnes of BR 

are used in the production of clinker worldwide. However, the use of BR as a raw material 

component in the OPC production varied between 0.8-3.5 wt.% [3]. Low-valorization values of 

BR has encouraged various organizations such as the International Alumina Institute to reach the 

strategic target goal of 20% valorization of BR by 2025. 

Currently in the laboratory scale, more than 20% of BR has been successfully valorized in the 

production of cements. In one of the research works, the amount of BR that has been valorized 
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accounted up to 23 wt.% in the raw meal production of OPC [4]. In this work, dealkalized BR 

obtained from the sintering process was used instead of the Bayer process. The dealkalized BR 

accounted for higher content of CaO and SiO2, thus making it suitable for large quantities allocated 

in the raw meal of OPC. BR has also found its ways as a raw material in the production of 

inorganic polymers. In the recent works of Giels et  al. [5], a compressive strength of 131MPa 

was achieved in 28 days by incorporating 81 wt% of BR. The BR was thermally modified at 

1200–1300 °C with minor additions of C, CaO and SiO2 to develop a reactive precursor. Thus, 

opening the possibility of upscaling the work. In the production of calcium sulfo-ferroaluminate 

cements (CSA-F), the maximum amount of BR valorized in the clinker production was 65 wt.% 

[6], nevertheless the highest 2 days compressive strength achieved was 28.5 MPa which is 

comparatively lower than the market produced standard CSA cements but still better than OPC 

52.5N. In the works of Hertel et al. [7], a 35.5 wt% BR as a raw meal component of CSA cement 

achieved a 2d compressive strength of 43MPa almost similar to the market produced CSA 

cements. In the production of ferrite-belite cements, incorporation high volumes of BR > 30 wt 

% to achieve a considerable compressive strength is still in progress. Currently, Montoya et al. 

[8] only achieved a compressive strength of 10 MPa after 28 days. Hence to understand the poor 

compressive strength results, it is important to characterize the clinker phase composition in 

depth.  

 

To achieve a clinker replacement factor of 30 wt% and a strength activity index above 75%, the 

EU-funded project - ReActiv (Industrial Residue Activation for Sustainable Cement Production) 

was implemented to achieve this milestone. In this study, two types of clinkers were produced 

from limestone (LS), kaolin (K) and bauxite residue (BR), with clinker replacement of 38 wt% 

and 50 wt% with BR at a chosen clinkering temperature range between 1250-1260°C  followed 

by rapid cooling respectively [9]. The first step of evaluating these clinkers was to characterize 

them. The minerology of the produced clinkers was obtained by X-ray diffraction (XRD). In 

addition, the X-ray fluorescence (XRF), scanning electron microscope (SEM-EDX) and electron 

probe micro-analysis (EPMA) was used for characterization. The physical characterizatin of the 

clinker was accomplished by measuring the density, blaine fineness and the particle size 

distribution. 

 

2. Materials and Methods 

 

2.1 Production of Clinker  

 

The raw materials for the ferrite-belite (FB) clinker were limestone (Carmeuse), bauxite residue 

(Mytilineos) and Kaolin (Imerys). Two mixtures of the FB cements were chosen: (1) 

LS57BR38CL5 where, 57 wt% of LS was mixed with 38 wt% BR and 5 wt% K and (2) 

LS45BR50CL5 where, 45 wt% of LS was mixed with 50 wt% BR and 5 wt% K. 

 

Figure 1 represents the schematic representation of the process flow for the preparation of the 

selected mixtures, based on the modification of the work of Montoya et al. [8].The weighed raw 

materials were mixed with ethanol and (a) zirconia grinding elements for 12 hr in an overhead 

shaker (Turbula WAB T2F) to obtain a homogeneous blend. (b) The mixtures were dried using 

rotovap (Heidolph 4010) to remove the ethanol. (c) The dried mixture for each selected 

composition mixed with 15% deionized water in a Hobart mixer to form ~ 2cm spherical pellets 

by hand. To remove the excess water content, the pellets were dried at 110°± 5 °C for 24h using 

a drying oven (Binder ED 260).  

 

Figure 2 represents the schematic representation of the process flow for clinker production of the 

selected mixture. The pellets were placed in an (a) alumina crucible and (b) introduced in a 

bottom-loading furnace (AGNI ELT 160-02) to reach the target temperature of 1260°C at a rate 
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4. Conclusion 

 

Based on the characterization of the FB cement clinker, the gehlenite content increases with 

higher BR content in raw meal of FB clinkers. Moreover, high gehlenite content also diminishes 

the mayenite that formed at low temperatures ( at temperatures < 1300°C). Hence in the high-BR 

clinker, the mayenite formation was suppressed due to increased gehlenite content in comparison 

to low-BR clinker. Furthermore, the content of belite in FB-clinkers where higher than the OPC 

and this is due to the absence of melt formation when sintering at lower temperatures. The 

chemical composition of the clinker phases revealed that most of the reactive phases such as belite 

and ferrites were stabilized by metal ions due to rapid cooling of the clinkers. Moreover, the BR 

content in the raw meal influenced the A/F ratio in the ferrite phase i.e., higher the BR content, 

lower the A/F ratio and thus reduced reactivity of the ferrite phase. This change in the A/F 

stoichiometry and the stabilization of the phases can improve the reaction kinetics during 

hydration of the cement. However, new strategies need to be devised in order to control the 

content of gehlenite in these clinkers, which are unreactive and do not contribute to the strength 

of the cement. Thus, raw materials that contain very high alumina and minor amounts of silica 

can be used with BR to formulate such clinkers.  
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